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First, Some Definitions

Spontaneous fission

A

d P

= Half-life: from 10%! years (*3?Th) to
...0.25 ms (**°No) covering more
than 30 orders of magnitude!

= Applications of induced fission in
energy production... and other
things

Induced fission

J neutron
fission
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What Should Theorists Look At?

= Properties of fission fragments
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Warming up gently

A Brief History of... Nuclear
Fission Theory




A Brief History of Nuclear Fission Models

The Stone Age (1940's)

= Nucleus is a charged quantum liquid drop Eiacro(q) with some
deformation parameters ¢ = (¢1, ..., q,)

= Mass formula (Bethe-Weiszacker, 1935) characterized by handful
of parameters fitted on atomic masses

b
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Z = Qvyol — asurbs(q)A2/3 _ acoubC(q>Z2A AR asym( )
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= |ncident neutrons bring enough energy to pass the barrier and
OOO ) OOQ

break the LD
Srraiaiag
Oo. O @ O .Q

Deformation energy

o

Deformation

From Wikipedia, “Semi-Empirical Mass Formula”,
http://en.wikipedia.org/wiki/Semi-empirical_mass_formula
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A Brief History of Nuclear Fission Models

The Antiquity (1960'¢s)

= Recognize the role of individual nucleons:

shell correction 0 Fspe11(q)

» Nuclear Shell Model (1949): nucleons as
independent particles in some nuclear potential

* Quantum mechanics 101 problem: solve
Schrodinger equation for some quantum well

Jensen

Goeppert-Mayer

S—1jis 16) — [184] — [184]
3dy,, % -
» Shell structure brings a correction to the liquid Né{j;j - éﬁf));
R - (10—
drop energy . o (41— (126 — (184
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= Recognize the role of residual interactions: {_f*i_f §
pairing correlations bring extra binding and e e
Iead to 5Epair( ) {— e B
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Nature 469, 68 (2011)
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A Brief History of Nuclear Fission Models

The Antiquity (1960'¢s)

= Macroscopic-microscopic models Symmetric deformation y

Enuc(q) == Emacro(q)
= 5Eshell<q) = 5Epair(Q>
= Explains deformed ground-states of °
nuclei, fission isomers, double-
humped fission barriers, variety of

fission products, etc.

Liquid-drup\
contribution ‘\.

'

Potential energy (MeV)

= Accuracy of the model depends on
» Fit of free parameters of LD and mean-
field (Nilsson, Woods-Saxon)
* Number of deformations g

) o . e L - | — ]
High excitation energies in induced fission o' o a5 5 o5 T
also requires nuclear temperature Asymmetric deformation e,

Phys. Rev. C5, 1050 (1972)
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A Brief History of Nuclear Fission Models
Schematic Model of Fission

Spontaneous .
p Dynamics Induced
\ * Semi-classical /" i
* Quantum-mechanical with ¢ /g;’
same Hamiltonian used for R * A A
QD neutron
Collective
V(q ) wave-packet
A
. \ Inner
Potential energy | RS- barrier Scission
surface (PES) > . Outer :
_ = |#(a;)) barrier * Arbitrary
* Phenomenological: c |$(a:)) — SEeT
: LLl
parameterized - = « From quantum
: : © —
Mlcroscoplc 'E E _________________ mechanlcs
derived from % —_ y
(effective) nuclear a | M. S SC_'StS'O”
forces g.s. Fission PO
Isomer
. . >
Collective coordinates q
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A Brief History of Nuclear Fission Models

The Classic Age (1980'¢*)

Acta Phys. Polon. B 34 (2003)

Dynamics of induced fission treated by
semi-classical methods :
» Langevin diffusion equations (India, Russia, "'}
France) s of
* Brownian motion model, flooding
algorithms, etc. (LANL/LBNL) :
Charge and mass distributions :
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Setting the stage

From Macroscopic-Microscopic Models
to a
Fully Microscopic Theory of Fission



Of Scales in Nuclear Physics

A Degrees of Freedom Energy (MeV)
Nuclear physics ranges from quarks .6
and gluons (QCD, scale >GeV) to 8 o “c'
collective states in nuclei (low-energy = (& 940
O neutron mass
nuclear structure, scale > keV) 8 40
>
g 3 . . =
Of the importance of identifying the * Qca 140
right degrees of freedom
A predictive theory can not ignore the .
S 8
interactions among nucleons 3 s vieg
5
What’s wrong with macroscopic- 8
c . =
microscopic models? g 132
» Liquid drop: no internal degree of freedom
» Shell effects: only one-body theory o
(independent particles with ad hoc O 0.043
quantum We”) state in uranium

collective coordinates
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Nuclear Density Functional Theory

= Basic assumption: all observables depend only on the density of

nucleons (and the pairing tensor)
E= [ dr Hipr)

= Use of the variational principle: find the actual density (and pairing
tensor) by requesting that the energy be minimal

= Allow the density (and the pairing tensor) to break symmetries
(translational, rotational invariance, particle number, etc.)

* Introduce deformation degrees of freedom, ,0(7“) — ,0(7“; di1, - qn)

* Provides consistent framework to build potential energy surface, compute
collective mass, do the dynamics, etc.

o Nuclear DFT is a reformulation of the nuclear self-consistent mean-field theory

o Formal issues actively researched: restoration of broken symmetries, configuration
mixing, connections with the theory of nuclear forces, etc.

12
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Solving the DFT Equations

= Non-linear differential equations The self-consistent DFT loop
- ~Adi I V[p(r)] Ppotential wave-functions
Schrodlnger equation where 00 Feanier b Ll
the potential V() depends on iml IS
the solutions ¢, (7) —
= Common technique: Expand o | =
solutions on a basis (linear A

algebra problem) \ /

 Deal with ~2000 x 2000 matrices

>
* Iterate until nothing changes, " 1fm]
requires 100 — 10000 iterations Self-consistent mean-field theory

Spherical symmetry (1D) Axial symmetry (2D) Symmetry unrestricted (3D)

r-space < 1 min, 1 thread 5 hours, 100 cores -

HO basis <1 min, 1 thread 1 min, 6-8 threads 6 hours, 1 core, 6-8 threads
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Computational Nuclear Structure

Nuclear fission is a very large-scale computational problem

» Size of collective space is > 500 x 100 x 100 x 100 x 40 = 5x108
(without including temperature or spin)

» Each point takes between 1 minute (axial, near ground-state)
and 2 days (triaxial, near scission)

* Need for highly optimized DFT solvers scaling to 1M+ cores

SciDAC collaborations help develop, optimize and scale [

nuclear simulations codes I NCI I E

LEADERSHIP COMPUTING

10° ‘ S
: 500 x 60 x 10 Scientific Grand Challenges Scientific Grand Challenges
r . FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND for National Security:
107k pOte W E) | energy THE ROLE OF COMPUTING AT THE EXTREME SCALE I TRENE SCALE
g S U rfa Ce i n 3 D January 26-28, 2009 - Washington, D.C. October 6-8, 2009 - Washington D.C.
— 10°
w0
£
5
= 10

10*
LLNL-CODE-470611 ]
10°F =
12)1 . 1(\)2 . 1(|)3 ‘ 1(\)4 . 165 . 106

Number of cores

Sponsored by the Office of Nuclear Physics and the Office of Advanced Scientific Computing Research
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The SciDAC 3 NUCLEI Collaboration

iDAC ' NUClear Computational Low-Energy Inftiative
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The Big Picture

Requirements for a microscopic STATIC

Theory of
Nuclear force

. | [Experimental] [ Interaction ] [ Opfimization ] |
theory of fission | "peé%?f”a | lEogonad  Lnained.

» Uses the right degree of freedom: for : y '
low-energy nuclear structure and | EEZEECRT(';‘\’(EF'S;E%?&E'H
reactions, nucleons (as point-like —— : :

) N ) | Cr_)llect_lve Quantum
particles) in interaction | L—ineriia L corrections |
. I
* Quantum mechanics always rules | .’ POTEQJ:QFLAEEERGY il
o . o |-
* Predictive power comes from internal \-—-—-— J———Jr ———————— 7
consistency and rigorous connections — pr—
. state | | 1DCCM of the Action
to underlying theory of the nuclear | ¢
force \ v !
. . c Fission Excitation Lifetimes
Nobody said it’s going to be easy... | fagment  eneqy | Otners..
distributions distribution
» Nuclear forces come with high | l '
uncertainties Reaction Theory
. . . |
» Computational problem is formidable ! I
Gamma spectrum Neutron spectrum
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Into the heart of matter

Spontaneous and Induced Fission at
High Excitation Energies



y 9

Managing the Scale prys.Rev. .50, SR

60 T

400

Q,, [b]

50

20

0 . S,
100 150
Qy [b]

Elongation and triaxiality

Qg [b%/?]

Example of a potential energy surface
= 5 in 4 dimensions: elongation (q,,),

o e triaxiality (9,,), mass asymmetry (gs,)
Fission and fusion valleys and thickness of the neck (C]40)
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Dealing with Excitation Energy

= Potential energy surfaces from
finite-temperature DFT

calculations

» System in thermal equilibrium

* Ground-state is statistical
superposition of pure quantum
mechanical states

» Well-known theory, first large-scale
implementations in past 5 years

= Scenario for induced fission
» Potential energy surfaces at finite
temperature define intrinsically
excited states
* Nuclear wave-packet formed from
these excited states at energy E_,
* Time-evolution gives distributions

Finite-temperature DFT
V(q) P

Potential Energy

Description of Induced Fission

E(S>0)

occupation

Maximum

allowable S.p. energy
thermal
excitation
energy U
A —t
S(N) E(S=O)
pr— c
p— o
—_— o
_— 3
—_— 9
O s5.p. energy

Collective coordinate q
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Evolution of Potential Energy Surfaces

= Generic features

* Small temperatures: anti-pairing and shell restoration effects

« Larger temperatures: shell effects disappear (more like a liquid drop)

= Range of energy for incident neutron relevant for most

applications is 0 — 14 MeV
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The Elusive Scission Point

= Definition of scission is arbitrary and
ambiguous

0.585
10.520
40.455

40.390

= Fission fragment properties strongly
depend on the scission configurations

~40.325

X [fm]

10.260

40.195

0.130
0.065

0.000

Ml Where is
| scission ?

-8 —e— T = 0.0 MeV
—&— T= 0.5MeV
—4— T= 1.0 MeV
—¥— T= 1.5 MeV
—a— T= 2.0 MeV
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Free Energy [MeV]
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130 25 2.0 15 1.0 0.5 0.0
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PRC 80, 054313 (2009), PRL 107, 132501 (2011), PRC 90,
054305 (2014)
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Fission and Quantum Entanglement

Quantum identification of fission

fragments

» Tag every nucleon “left” or “right” based
on spatial occupation = defines sets of
guasiparticles in each fragment

* Construct associated “densities”

= Quantum localization procedure
* Perform a unitary transformation
pairwise to localize the particles:

— Doesn’t change the energy of the system

— Changes fragment properties

= Advantages:
* Reduce the tail between the fragments
* Make sure fragments are independent
guantum systems

PRL 107, 132501 (2011), PRC 90, 054305 (2014), arXiv:1311.2620
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ive Space

rtance of the number and type
collective variables

60 80
PRC 88, 064314 (2013) 0, (b)
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Fission Fragment Distributions

= Solve dynamics of Peonn ~Schillebeecks
fission assuming ~ -- TDGCM (SkM¥*)
adiabaticity: slow 2o \
motion in collective & /v
space £ 004 4

= Reduce time- %
dependent g 002 |
Schrédinger ” o
equation to 0'008;; = 90 100 110 120 130 140 150 160
diffusion-like Fission Fragment Mass

equation for the Fully microscopic calculation of fission fragment
collective amplitude RISl NNl Dl Nittel

= Solve using finite
element analysis
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Conclusions

= Nuclear fission
* An 75 year-old problem in nuclear science without an accurate and
precise solution yet, in spite of many very practical applications!
* Microscopic methods based on density functional theory are now
applicable and are becoming competitive with more empirical approaches

* Much progress in last 10 years from
— better understanding of the physics of fission
— increased availability and usage of high-performance computing

= Recent progress not discussed here
» Verification and validation of energy functionals for fission
» Full study of collective dissipation in 2D dynamics

= Challenges ahead
» Extending theory of collective inertia at higher excitation energies
» Realistic studies of fission dynamics in N-dimensions

» Detailed study of fission fragment properties
— Charge and mass (requires projection on particle number)
— Excitation energies and temperature partitioning in the fragments

26
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